Diterpenoid and Phenolic Compounds from Juncus effusus L.

by Guang Zhong Yang^{*a}), Hong Xia Li^a), Fa Jun Song^a), and Yu Chen^b)

 ^a) Laboratory for Natural Product Chemistry, College of Life Sciences, South Central University for Nationalities, Wuhan 430074, P. R. China (phone: +86-27-67842689; fax: +86-27-67842689; e-mail: yanggz888@126.com)
 ^b) College of Chemistry and Material Sciences, South Central University for Nationalities, Wuhan 430074, P. R. China

A novel diterpene, named effusenone A (1a), which is the first reported rosane-type diterpene from a *Juncaceae* plant, and three novel phenolic compounds, 5-(hydroxymethyl)-1-methylphenanthrene-2,7-diol (4), 1-methylpyrene-2,7-diol (5), and 7-methoxy-8-methylpyren-2-ol (6) were isolated from the stem of *Juncus effusus* L. by normal-phase and reversed-phase silica gel column chromatography. Their structures were identified by spectroscopic methods, especially 2D-NMR techniques.

Introduction. - Juncus effusus L. is a plant belonging to the Juncaceae family, which ranges from the tropical and subtropical zones to the frigid zone and is often found in wetlands and coastal marshes [1]. There are 77 species, 1 subspecies, and 10 mutations among the Juncaceae plants in China [2]. The chemical constituents of three Juncaceae plants, i.e., of J. effusus L., J. roemrianus, and J. acutus, have been extensively studied. Many phenanthrenoids [3], cycloartane triterpenes [4], and benzocoumarins [5] were isolated from those plants, and phenanthrenoids were major bioactive compounds which showed cytotoxic, antimicrobial and antialgal activities [3]. Recently, it was found that dehydroeffusol (=5-ethenyl-1-methylphenanthrene-2,7-diol) isolated from J. effusus L. displayed photosensitizing activity against some microbes and photosensitized DNA-binding activity, and it represented a novel type of photosensitizers from plants [6]. Those interesting activities have prompted us to reinvestigate the constituents of J. effusus L. As a result, a novel diterpene, named effusenone A (1a), which is the first reported rosane-type diterpene from a Juncaceae plant, and three novel phenolic compounds, 5-(hydroxymethyl)-1-methylphenanthrene-2,7-diol (4), 1methylpyrene-2,7-diol (5), and 7-methoxy-8-methylpyren-2-ol (6) were isolated from the medullae of Juncus effusus L. by normal-phase and reversed-phase silica gel column chromatography. Their structures were identified by spectroscopic methods, especially 2D-NMR techniques. This paper deals with the structural investigation of those natural products.

Results and Discussion. – Compound **1a** was obtained as a yellow oil. The molecular formula was determined to be $C_{23}H_{36}O_5$ by HR-EI-MS with indicated 6 degrees of unsaturation. The ¹H- and ¹³C-NMR data (*Table 1*) suggested that **1a** was a rosane (=(4a*R*,4b*R*,7*R*,8a*R*,10a*R*)-7-ethyltetradecahydro-1,1,4b,7-tetramethylphenanthrene) diterpenoid having a 1,2-dihydroxyethyl side chain [7]. ¹H,¹H-COSY, HMBC (*Table 1*)

^{© 2007} Verlag Helvetica Chimica Acta AG, Zürich

and *Fig. 1*) and ROESY experiments and comparison with known compounds established the structure of **1a** as (3β) -3,19-dihydroxy-15,16-(isopropylidenedioxy)-ros-1(10)-en-2-one.

Fig. 1. Significant HMBC correlations of compound 1

The ¹H-NMR spectrum of **1a** showed one olefinic proton at δ 6.12 (*s*), three tertiary Me *s* (δ 0.87, 1.04, and 1.34), and one oxymethine proton at δ 4.12 (br. *s*). Two one-proton signals at δ 3.52 (*d*, *J* = 11.2 Hz) and 3.64 (*d*, *J* = 11.2 Hz) and the ¹³C-NMR signal at δ 63.3 (*t*) indicated the presence of an oxymethylene moiety. The *ABX* system at δ (H) 3.78 (*t*, *J* = 7.2 Hz), 3.72 (*t*, *J* = 7.0 Hz), and 3.92 (*t*, *J* = 6.0 Hz) and the δ (C) 64.6 (*t*) and 84.2 (*d*) were consistent with a $-CH(O)-CH_2(O)$ fragment in compound **1a**, which was confirmed by the ¹H,¹H-COSY correlations δ 3.78 (*t*, *J* = 7.2 Hz), δ 3.72 (*t*, *J* = 7.0 Hz), and 3.92 (*t*, *J* = 7.0 Hz), and 3.92 (*t*, *J* = 6.0 Hz), and δ 3.72/ δ 3.92. The ¹H-NMR spectrum further showed two Me signals at δ 1.35 and 1.42, and the ¹³C-NMR three signals at δ 108.7 (*s*), 25.0 (*q*), and 26.1 (*q*), indicating that **1a** contained an isopropylidene moiety. Besides the three C-signals of the isopropylidene moiety, the ¹³C-NMR and DEPT spectra displayed the presence of seven CH₂ groups, two of which were

¹⁾ Trivial atom numbering; for systematic names, see Exper. Part.

HELVETICA CHIMICA ACTA - Vol. 90 (2007)

	$\delta(\mathrm{H})$	$\delta(C)$	HMBC $(H \rightarrow C)$
H-C(1)	6.12 <i>(s)</i>	119.8 (d)	C(2), C(3), C(5), C(9)
C(2)	-	199.1 (s)	
H-C(3)	4.12 (s)	80.4(d)	C(4), C(18), C(19)
C(4)	-	46.8(s)	
H-C(5)	2.69 (br. $d, J = 13.5$)	44.0(d)	
$CH_{2}(6)$	0.92 - 0.95(m)	17.8(t)	
$CH_{2}(7)$	1.22 - 1.28 (m)	29.7 (t)	
H-C(8)	1.72 - 1.74 (m)	30.2(d)	
C(9)	-	39.2 (s)	
C(10)	-	177.1 (s)	
CH ₂ (11)	1.69 - 1.79(m)	33.7 (t)	
$CH_{2}(12)$	0.99 - 1.04 (m)	36.5 (t)	
C(13)	-	35.4 (s)	
C(14)	1.35 - 1.40 (m)	28.1(t)	
H - C(15)	3.78(t, J = 7.2)	84.2(d)	C(13)
$CH_2(16)$	3.72 (t, J = 7.0), 3.92 (t, J = 6.0)	64.6 (t)	C(13), C(15), C(21)
Me(17)	0.87 (s)	18.7(q)	C(12), C(13), C(14), C(15)
Me(18)	1.34 (s)	20.5(q)	C(3), C(4), C(5), C(19)
CH ₂ (19)	3.64 (d, J = 11.2), 3.52 (d, J = 11.2)	63.3 (t)	C(4), C(5)
Me(20)	1.04 (s)	19.1(q)	C(8), C(9), C(10), C(11)
C(21)	-	108.7 (s)	
Me(22)	1.35 (s)	25.0(q)	C(21)
Me(23)	1.42 (s)	26.1(q)	C(21)

Table 1. ¹*H*-*NMR*, ¹³*C*-*NMR*, and *HMBC* Data (CDCl₃) of Compound 1. δ in ppm, J in Hz.

oxymethylene groups, four CH groups, two of which were oxygenated, three quaternary C-atoms, three Me groups, and an α,β -unsaturated carbonyl group (δ 119.8 (d), 177.1 (s), 199.1 (s)). The isopropylidene moiety at the rosane skeleton was located at C(15) and $C(16)^1$, as suggested by the HMBC correlations (Fig. 1) of the Me groups at $\delta(H)$ 1.35 and 1.42, and of the OCH₂ group at $\delta(H)$ 3.72 (t, J = 7.0 Hz) and 3.92 (t, J = 6.0 Hz) with the quaternary C-atom at $\delta(C)$ 108.7 (s). The position of the OH group in compound **1a** was determined to be C(3) by the HMBC correlation δ (H) 4.12/ δ (C) 46.8 (C(4)), 20.5 (C(19) or C(18)), and 63.3 (C(19) or C(18)). Comparison of the signals of C(1), C(2), C(3), C(4), C(5), and C(10) with those of the known compound 18-hydroxyhugorosenone (3), isolated from Hugonia *casteneifolia* [8], revealed similar $\delta(C)$, except for the chemical shifts of C(3) and C(5). This suggested that ring A of **1a** should be the same as that of **3**, except for the location of the hydroxymethyl group. In the diterpenes 2 [8] and 3 bearing a 3β -hydroxy and a 3β , 18-dihydroxy moiety, respectively, the chemical shift of C(3) of the latter was shielded by *ca*. 5 ppm. The δ (C) of C(3) in **1a** and **2** was almost the same, *i.e.*, the $\delta(C)$ of C(3) of **1a** was only slightly affected by the hydroxymethyl group. Thus, the second OH group of 1a should be located at C(19) [9]. The assumption was further supported by the NOEs Me(18) $(\delta 1.34(s)), H-C(5)$ ($\delta 2.69$ (br. d, J = 13.5 Hz)) and H-C(3) (4.12(s)) in the ROESY plot. The relative configuration of **1a** was deduced from the ROESY data. The presence of NOE cross-peaks H-C(8)/H-C(5) and Me(17), and Me(20)/H-C(15) clearly established that Me(17), Me(20), and H-C(8) were α -, β -, and α -positioned, respectively. However, the relative configuration at C(15) was not determined from the ROESY data.

The presence of an isopropylidene acetal in naturally occurring metabolites is very rare, and this functionality of **1a** was shown to arise from the acetone used for the extract separation by chromatography on silica gel. Indeed, TLC analysis of the crude extract revealed the absence of compound **1a**. Thus, the structure of the natural-

product precursor of **1a** in the plant must be (3β) -3,15,16,19-tetrahydroxyros-1(10)-en-2-one (**1b**).

Previous phytochemical investigations of three species of the *Junaceae* genus yielded phenanthrenoids and cycloartane triterpenes. This is the first report of a rosane-type diterpene in the genus. Rosanes are unusual diterpenoids for the *Junaceae*. Rosanes arise by migration of the Me-C(10) group of pimaranes to C(9) and occur in both enantiomeric series predominantly in high plants [10]. The absolute configuration of **1a** was not determined.

Compound **4** was obtained as a yellow amorphous powder. The EI-MS of **4** had an apparent molecular-ion peak at m/z 254; the molecular formula was determined to be C₁₆H₁₄O₃ by HR-EI-MS. The ¹H- and ¹³C-NMR (*Table 2*) and HMBC data (*Table 2* and *Fig. 2*) suggested that **4** was 5-(hydroxymethyl)-1-methylphenanthrene-2,7-diol. Further confirmation of the structure was provided by the 2D-NMR data.

Fig. 2. Significant HMBC correlations of compound 4

	$\delta(\mathrm{H})$	$\delta(C)$	HMBC $(H \rightarrow C)$
C(1)	-	117.2 (s)	
C(2)	_	152.2(s)	
H-C(3)	7.24 (d, J = 9.0)	115.5(d)	C(1), C(2), C(4a)
H-C(4)	8.56 (d, J = 9.0)	126.4(d)	C(2), C(3), C(4b), C(10a)
C(4a)	_	125.0(s)	
C(4b)	_	124.5(s)	
C(5)	_	140.2(s)	
H-C(6)	7.48 (d, J = 2.4)	119.4(d)	$C(4b), C(8), CH_2 - C(5)$
C(7)	_	154.4(s)	
H-C(8)	7.23 (d, J = 2.4)	111.4(d)	C(4b), C(6), C(7), C(9)
C(8a)	_	133.9(s)	
H-C(9)	7.64 (d, J = 9.0)	127.4(d)	C(4b), C(8), C(8a), C(10a),
CH(10)	7.88 (d, J = 9.0)	122.9(d)	C(1), C(4a), C(8a), C(10a),
C(10a)	_	132.8(s)	
Me-C(1)	2.57(s)	10.7(q)	C(1), C(2), C(10a)
$CH_2-C(5)$	5.18 (s)	65.2 (<i>t</i>)	C(4b), C(5), C(6)

Table 2. ¹H-NMR, ¹³C-NMR, and HMBC Data (CDCl₃) of Compound 4. δ in ppm, J in Hz.

The ¹H-NMR spectrum of **4** exhibited the signal for an aromatic Me group at $\delta 2.57(s)$, six aromatic protons, including four *ortho*-coupled protons at $\delta 7.24$ and 8.56, and $\delta 7.64$ and 7.88, and two *meta*-coupled protons at $\delta 7.23$ and 7.48, and one oxygenated CH₂ group at $\delta 5.18(s)$. The ¹³C-NMR of **4** showed 16 C-atoms: six aromatic CH groups, eight quaternary aromatic C-atoms including two

oxygentaed ones, one Me group, and an oxygenated CH₂ group. The NMR data of **4** closely resembled that of dehydroeffusol (= 5-ethenyl-1-methylphenanthrene-2,7-diol) isolated from the same plant [11]. However, the signals of three olefinic protons and two olefinic C-atoms in the NMR spectra of dehydroeffusol were absent in those of **4**, and the signals of a CH₂ group attached to an OH group (δ 65.2 (t), δ 5.18 (s, 2 H)) were present in those of **4**, indicating that the CH₂=CH-C(5) of dehydroeffusol was replaced by HOCH₂-C(5). In the HMBC plot (*cf. Fig.* 2), the correlations CH₂-C(5)/C(6), C(4b), and C(5), and H-C(6)/C(8), C(4b), and CH₂-C(5), clearly indicated the presence of a CH₂OH group at C(5) of **4**.

Compound **5**, obtained as a yellow amorphous powder, had a molecular formula $C_{17}H_{12}O_2$ as revealed by the HR-EI-MS (m/z 248.0834 ($C_{17}H_{12}O_2^+$)). Its ¹H- and ¹³C-NMR (*Table 3*) and HMBC data (*Fig. 3*) and comparison with those at 1,6-dimethylpyrene-2,7-diol [12], isolated from *Juncus acutus*, established the structure of **5** as 1-methylpyrene-2,7-diol.

Fig. 3. Significant HMBC correlations of compound 5

	5		6 ^a)		
	$\delta(\mathrm{H})$	$\delta(C)$	$\delta(\mathrm{H})$	$\delta(C)$	
C(1)	-	119.3 (s)	-	121.0 (s)	
C(2)	_	152.8(s)	_	155.3 (s)	
H-C(3)	7.73(s)	112.0(d)	7.86(s)	107.6 (d)	
C(3a)	_	120.0(s)	_	120.3(s)	
H-C(4)	7.88(s)	127.3(d)	8.03 (d, J = 8.7)	127.7(d)	
H-C(5)	7.88(s)	126.3(d)	7.93 (d, J = 8.7)	126.3(d)	
C(5a)	_	132.2(s)	_	132.4(s)	
H-C(6)	7.65 $(d, J = 2.4)$	111.6(d)	7.68(s)	111.9 (d)	
C(7)	_	155.0(s)	_	155.2(s)	
H-C(8)	7.64 (d, J = 2.4)	111.6(d)	7.68(s)	111.9 (d)	
C(8a)	_	119.9(s)	_	119.6 (s)	
H-C(9)	7.99(d, J = 9.3)	127.0(d)	8.00 (d, J = 8.7)	127.3(d)	
H - C(10)	8.21(d, J=9.3)	124.1(d)	8.21 (d, J = 8.7)	124.1(d)	
C(10a)	_	129.5(s)	_	129.5 (s)	
C(10b)	_	131.6(s)	_	131.8 (s)	
C(10c)	_	129.9(s)	_	129.6 (s)	
Me-C(1)	2.77(s)	10.8(q)	2.77(s)	10.8(q)	
MeO	-	-	4.11 (s)	55.8(q)	

Table 3. ¹H- and ¹³C-NMR Data ((D_6)acetone) of Compounds 5 and 6. δ in ppm, J in Hz.

The ¹H-NMR spectrum of **5** revealed the presence of one Me group at δ 2.77 (*s*), two *ortho*-coupled protons at δ 8.21 and 7.99, two *meta*-coupled protons at δ 7.65 and 7.64, and three *s* protons at δ 7.88 (*s*, 2 H) and 7.73 (*s*, 1 H). The ¹³C-NMR spectrum of **5** showed 17 C-signals, including 7 CH groups at δ 112.0, 111.6, 111.6, 127.0, 124.1, 126.3, and 127.3, 9 quaternary C-atoms (including two oxygenated ones at δ 155.0 and 152.8), and one Me group at δ 10.8. The NMR data of **5** were very similar to those of 1,6-dimethylpyrene-2,7-diol [12], except for the following observations. In the ¹H-NMR spectrum of **5**, the two Me groups at δ 2.76 (*s*, 6 H) and the aromatic proton at δ 7.67 (*s*, 1 H) of 1,6-dimethylpyrene-2,7-diol were replaced by the signal of one Me group at δ 2.77 (*s*, 3 H) and two *meta*-coupled protons at δ 7.65 and 7.64. The ¹³C-NMR spectrum of 1,6-dimethylpyrene-2,7-diol had one more quaternary and Me C-signal compared with those of **5**. All these data suggested that the Me group at C(6) of 1,6-dimethylpyrene-2,7-diol was absent in compound **5**. The HMBC plot (*cf. Fig.* 3) showed the cross-peaks H–C(6)/C(5) and C(7), and H–C(8)/C(7), C(8a), and C(9). The Me–C(6) of 1,6-dimethylpyrene-2,7-diol being absent in **5**, **5** had only a partially symmetric structure involving C(2) to C(7). Therefore, H–C(4) and H–C(5) were magnetically equivalent giving rise to a *s* at δ 7.88 (*s*, 2 H) in the ¹H-NMR spectrum. In the HSQC plot, the protons at 7.88 (*s*, 2 H) were correlated with 126.3 (C(4)) and 127.3 (C(5)).

Compound **6** was obtained as a yellow amorphous powder. Its ¹³C-NMR spectra were similar to those of **5**, suggesting similar basic C-skeletons. The structure of **6** was deduced from its ¹H- and ¹³C-NMR (*Table 3*) and NOESY data as 7-methoxy-8-methylpyren-2-ol.

The ¹H-NMR spectrum of **6** was also similar to that of **5**, except for four *ortho*-coupled protons at δ 8.21 and 8.00, and δ 8.03 and 7.93 and one MeO group at δ 4.11 in the case of **6**, and two *ortho*-coupled protons at δ 8.21 and 7.99 and two *s* protons at δ 7.88 (*s*, 2 H) in the case of **5**. This suggested that one of the OH groups of **5** was replaced by an MeO group in **6**. In the NOESY plot, a cross-peak between H–C(3) and the MeO group was observed (atom numbering as for **5**, see *Table 3*).

Financial support by the *Natural Science Foundation of Hubei Province of China* (for *G. Z. Yang*, 2005ABA071) and the *Scientific Research Foundation for Returned Scholars* (Ministry of Education of China) is gratefully acknowledged. We thank Prof. *Ding-rong Wan*, College of Life Sciences, South Central University for Nationalities, for the identification of this plant.

Experiment Part

General. Column chromatography (CC) and TLC: silica gel 60 H pre-coated silica gel GF254 plates, resp., from Qingdao Haiyang Chemical Group Co., China; C_{18} reversed-phase silica gel from YMC Co., Ltd., Japan. Optical rotation: Jasco-DIP-181 polarimeter. ¹H- and ¹³C-NMR Spectra: Bruker AM-400 instrument; δ in ppm rel. to SiMe₄ as internal standard (=0 ppm), J in Hz. MS: Varian MAT-711 spectrometer; in m/z (rel. %)

Plant Material. The stems of *Juncus effusus* L. were purchased from the *Wuhan Red Cross Pharmaceutical Company*, China. The plant material was identified by Prof. *Ding-rong Wan*, College of Life Sciences, South Central University for Nationalities, Wuhan, China. The voucher specimen was deposited in the herbarium of the College of Life Sciences, South Central University for Nationalities.

Extraction and Isolation. The dried stems (10 kg) of *Juncus effusus* L. were powdered and extracted with 95% EtOH. The EtOH extract (166 g) was extracted successively with petroleum ether, AcOEt, and BuOH. The AcOEt extract (55 g) was subjected to CC (silica gel, petroleum ether/acetone 9:1, 8:2, 7:3, 1:1, 3:7, and 0:1): *Fractions* 1-75. The combined *Fr.* 15-20 (670 mg) were repeatedly subjected to CC (silica gel and octadecylsilane (ODS)): **5** (1 mg). The combined *Fr.* 31-34 (1.95 g) were repeatedly subjected to CC (silica gel and ODS): **6** (1.9 mg). The combined *Fr.* 39-62 (15.05 g) were repeatedly subjected to CC (silica gel and ODS): **1a** (6.1 mg) and **4** (7.2 mg).

Effusenone A $(=(3\beta)-3,19$ -Dihydroxy-15,16-(isopropylidenedioxy)ros-1(10)-en-2-one = rel-(1R,2S,4bS,7S,8aS,10aS)-7-(2,2-Dimethyl-1,3-dioxolan-4-yl)-1,4b,5,6,7,8,8a,9,10,10a-decahydro-2-hy-

*droxy-1-(hydroxymethyl)-1,4b,7-trimethylphenanthren-3(*2H)*one*; **1a**): Yellow oil. $[a]_D = -32.3$ (c = 0.3, CHCl₃). ¹H- and ¹³C-NMR: *Table 1*. EI-MS: 392 (6, M^+), 377 (21), 360 (19), 287 (19), 137 (19), 121 (11), 101 (100). HR-EI-MS: 392.2564 ($C_{23}H_{36}O_5^+$; calc. 392.2563).

5-(*Hydroxymethyl*)-1-methylphenanthrene-2,7-diol (4): Yellow amorphous powder. ¹H- and ¹³C-NMR: *Table* 2. EI-MS: 254 (100, M^+), 237 (11), 221 (18), 165 (11). HR-EI-MS: 254.0945 (C₁₆H₁₄O₃⁺; calc. 254.0943).

1-Methylpyrene-2,7-diol (**5**): Yellow amorphous powder. ¹H- and ¹³C-NMR: *Table 3*. EI-MS: 248 (9, M^+), 219 (58), 189 (100), 99 (39), 87 (56), 62 (64), 59 (99). HR-EI-MS: 248.0834 ($C_{17}H_{12}O_2^+$; calc. 248.0837).

7-*Methoxy-8-methylpyren-2-ol* (6): Yellow amorphous powder. ¹H- and ¹³C-NMR: *Table 3*. EI-MS: 262 (22, M^+), 231 (22), 189 (12), 167 (22), 149 (89), 108 (24), 81 (54), 69 (100). HR-EI-MS: 262.0981 (C₁₈H₁₄O₂⁺; calc. 262.0994).

REFERENCES

- [1] D. Z. Jin, Z. D. Min, G. C. Y. Chiou, M. Iinuma, T. Tanaka, Phytochemistry 1996, 41, 545.
- [2] G. F. Wu, Acta Phytotaxon. Sin. 1994, 32, 433.
- [3] Y. Chen, G. Z. Yang, Nat. Prod. Res. Dev. 2005, 17, 505.
- M. M. Corsaro, M. Della Greca, A. Fiorentino, P. Monaco, L. Previtera, *Phytochemistry* 1994, 37, 515;
 M. Della Greca, A. Fiorentino, P. Monaco, L. Previtera, *Phytochemistry* 1994, 35, 1017.
- [5] M. Della Greca, A. Fiorentino, M. Isidori, L. Previtera, F. Temussi, A. Zarrelli, *Tetrahedron* 2003, 59, 4821.
- [6] F. Hanawa, M. Okamoto, G. H. N. Towers, Photochem. Photobiol. 2002, 76, 51.
- [7] X. D. Luo, S. H. Wu, Y. B. Ma, D. G. Wu, *Phytochemistry* 2001, 57, 131; R. S. Xu, 'Introduction of Natural Product Chemistry', Scientific Press, Beijing, 2006, p. 161.
- [8] L. K. Mdee, R. Waibel, M. H. H. Nkunya, S. A. Jonker, H. Achenbach, *Phytochemistry* 1998, 49, 1107.
- [9] S. B. Mahato, A. P. Kundu, *Phytochemistry* **1994**, *37*, 1517.
- [10] H. Feld, J. Zapp, H. Becker, Phytochemistry 2003, 64, 1335.
- [11] K. Shima, M. Toyata, Y. Asakawa, Phytochemistry 1991, 30, 3149.
- [12] M. Della Greca, A. Fiorentino, M. Isidori, M. Lavorgna, P. Monaco, L. Previtera, F. Temussi, A. Zarrelli, *Phytochemistry* 2002, 60, 633.

Received February 3, 2007